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Input: Type of Reactor System Type of Power System Resource production Requirement, N
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ISRU System Model
*: implicit variables determined by the reactor
| type
Reactor Megitreas = FIN) I N': resource production, kg/h
~oil/ Exhaust GaleompoﬂEﬂt’ M: 5u|;}5\rr5tem mass, kg
Mg, = F1(N) Operation Environment® P: subsystem power, kW
Pg, = G,(N) Excavator/
Re 1 Acquisition Sys. | 1 Size and # of Reactors*
Production Rate*
Mg, = FZ(HISOEUGCIS) Separator Storage Length L. days
Pgy = G2(Msoit/cas) P L 4 Operation Length @, hr [day 4————
M., = F;(N) Hopper/Feed/ The type of power system
. Secondary Svys. ¥ can influence the daily
Ps, = G3(N) Yoy T—— operation length
IqueTaction
Mpr =F(N) | 7J
& Storage
Pyp = G4(N)
Mg, = F5(QLN)
Ps; = G5(QLN)
Power
Mpower = Fg(Ppe + Pgy + Pgp + Pyp + Pg;)
Qutput: Total System Power: Pr, . = Pgo+ Pg.+ Ps,+ Pyp+ Pg;

Total System Mass: My . = Mg+ Mg+ Mg+ Myp+ Mg+ Mp o
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Input; Typeof Reactor System  Type of Power System Resource production Requirement, N @ Earth Surface Node

@ { | Earth/Cis-Lunar System Node

ISRU System Model @ Martian System Node
b it FRACtor
Reactor 1 type I- ISRU Plant
e m N
mw""c"’! o) Exhaust {’.‘as_c‘ompmleal[' M: . kg
Mre = Fi(N) 3 Operation Envirenment* Prg T, kW
Fao = Go(N) xcavator/
Re Acquisition Sys. Size and # of Reactors' KSC: Kennedy Space Center

Production Rate® PAC: Pacific Ocean

Mgy = Fa(Mson/gas) Separator Storage Length L.days LEO: Low-Earth Orbit

Py = Ga(Mguijas) Operation Length @.hr/day LSP: Lunar South Pole

Mg, = F3(N) | Hopper/Feed/ LLO: Low-Lunar Orbit )
Poy = Ga(N) Secondary Sys. EML: Earth-Moon Lagrangian Points
o i ! LTO: Lunar Transfer Orbit
My = E4(N) Storage LMO: Low Mars Orbit
Py = Ga(N) GC: Gale Crater
Mg, = F5(QLN)
Pgp = Go(QLN)
Power
Mpower = Fs(Pre + Ppx + Pse + Pyp + Pst)
Qutput: Total System Power: Propgy = Ppot Ppet Pogt Pypt Poy EML1 '

Total System Mass: Mygear = Mpet Mpct Mset Mypt Mo+ Mpoyyer

* ISRU system architecture trade study:
* Reactor type(s) selection for demands
e Power subsystem selection: PV vs nuclear
* ISRU operational trade study:
» Daytime-only operation or deploy additional batteries/fuel cells for night
* Frequency of logistics missions and its impact on storage size
* ISRU deployment timeline/location trade study:
* Deploy ISRU in 1 stage or multiple stages? If multiple stages, how many?
e Could lunar ISRU be beneficial to Mars mission?
* What if there is a space station, such as Deep Space Gateway?
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@ earth Surface Node

t+1 t+2 t+ t+4

e e /' ot , _
(i, t) Xijt Xije  (j, t + At;;)
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Earth/Cis-Lunar System Node

@ Martian System Node

time >
Minimize: d= Z(V,i,j,t)eg cvijthvijt Flow Transformation
Subject to:
Xvijt — Z Fojixyji(t-nt;) )< die Vi€ N VYt € T— Mass balance
,)):(v,i,j,6)EG w,)):(v,j,i,t)EG
HyijXpije < 01 Y(0,10,j,t) €A > Flow Concurrency

Xvijt > Opxl ift € Wl]

_ V(v iit)e :
Xyijt = Opxq Otherwise w,i,j,t) €A Flow bound

xm]t—l ] ,Xn €Z,0or R, Vne{l,..,p} Vv, i,j,t) EA
vijt
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Detine the commodity flow variables as,

[ x'1: infrastructure system 1,kg |
x'2: infrastructure system 2, kg
Xpije = x'3: infrastructure system 3, kg
xP: power generation system, kg
| xE: energy storage system, kg Lyije
Power generation capacity constraint can be written as,
I
x'1
Q,—0Q Q,—0Q Qr,—0Q I
[P,1(1 +——P) pa+=2—P) pa+—=) —-p| [*]| <o
SQp 8Qp EQp vij X3
xP vijt
where @ is the system operation time per solar day.
The energy storage capacity constraint can be written as,
el
I
y X
[—P11 —P, =P, Py T 0, x!3 <0
-xE-vijt

where P is the system power demand or supply.
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Mission Cost, $B
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* ISRU is more effective
for round-trip missions
than one-way cargo
missions;

* FSPS (Fission Surface
Power Systems) has a
better performance than
the PV (Photovoltaic)
power system (i.e., solar
panels) in this case.

®

Developed optimization framework can be used for

» Design of large-scale space exploration campaign considering
the interaction between space infrastructure design and
space transportation planning.

» Fast evaluation of potential performances of space
architectures and spacecraft in large-scale campaign




