College of Engineering

Summary of ISRU Trade Study

Prof. Koki Ho
Director, Space Systems Optimization Group
Georgia Institute of Technology
Formerly at Univ. of Illinois

- This material is partially based upon work supported by the funding from NASA NextSTEP program (80NSSC18P3418) awarded to the University of Illinois, where this work was initiated.
- H. Chen, T. Sarton du Jonchay, L. Hou, and K. Ho, "Integrated In-Situ Resource Utilization System Design and Logistics for Mars Exploration," Acta Astronautica, Vol. 170, pp. 80-92, 2020.

Integrated ISRU Mode

Input: Type of Reactor System Type of Power System Resource production Requirement, N

ISRU System Model

- ISRU system architecture trade study:
- Reactor type(s) selection for demands
- Power subsystem selection: PV vs nuclear
- ISRU operational trade study:
- Daytime-only operation or deploy additional batteries/fuel cells for night
- Frequency of logistics missions and its impact on storage size
- ISRU deployment timeline/location trade study:
- Deploy ISRU in 1 stage or multiple stages? If multiple stages, how many?
- Could lunar ISRU be beneficial to Mars mission?
- What if there is a space station, such as Deep Space Gateway?

Space Logistics Optim

Georgia Tech y

Minimize:

$$
\mathcal{J}=\sum_{(v, i, j, t) \in \mathcal{G}} \boldsymbol{c}_{v i j t}{ }^{T} \boldsymbol{x}_{v i j t} \quad, \text { Flow Transformation }
$$

Subject to:

$$
\begin{gathered}
\sum_{(v, j):(v, i, j, t) \in \mathcal{G}} \boldsymbol{x}_{v i j t}-\sum_{\substack{(v, j):(v, j, i, t) \in \mathcal{G}}} F_{v i j} \boldsymbol{x}_{v j i\left(t-\Delta t_{j i}\right)} \leq \boldsymbol{d}_{i t} \quad \forall i \in \mathcal{N} \forall t \in \mathcal{T} \rightarrow \text { Mass balance } \\
H_{v i j} \boldsymbol{x}_{v i j t} \leq \mathbf{0}_{l \times 1} \quad \forall(v, i, j, t) \in \mathcal{A} \xrightarrow{\boldsymbol{x}_{v i j t} \geq \mathbf{0}_{p \times 1} \quad \text { if } t \in W_{i j}} \begin{array}{l}
\boldsymbol{x}_{v i j t}=\mathbf{0}_{p \times 1} \text { otherwise } \quad \forall(v, i, j, t) \in \mathcal{A} \longrightarrow \text { Flow Concurrency } \\
\boldsymbol{x}_{v i j t}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]_{v i j t}, x_{n} \in \mathbb{Z}_{+} \text {or } \mathbb{R}_{+} \quad \forall n \in\{1, \ldots, p\} \quad \forall(v, i, j, t) \in \mathcal{A}
\end{array}
\end{gathered}
$$

Detine the commodity flow variables as,

$$
\boldsymbol{x}_{v i j t}=\left[\begin{array}{c}
x^{I_{1}}: \text { infrastructure system } 1, \mathrm{~kg} \\
x^{I_{2}}: \text { infrastructure system } 2, \mathrm{~kg} \\
x^{I_{3}}: \text { infrastructure system } 3, \mathrm{~kg} \\
x^{P}: \text { power generation system, } \mathrm{kg} \\
x^{E}: \text { energy storage system, } \mathrm{kg}
\end{array}\right]_{v i j t}
$$

Power generation capacity constraint can be written as,

$$
\left[P_{I_{1}}\left(1+\frac{Q_{I_{1}}-Q_{p}}{\varepsilon Q_{p}}\right) \quad P_{I_{2}}\left(1+\frac{Q_{I_{2}}-Q_{p}}{\varepsilon Q_{p}}\right) \quad P_{I_{3}}\left(1+\frac{Q_{I_{3}}-Q_{p}}{\varepsilon Q_{p}}\right) \quad-P_{0}\right]_{v i j}\left[\begin{array}{l}
x^{I_{1}} \\
x^{I_{2}} \\
x^{I_{3}} \\
x^{P}
\end{array}\right]_{v i j t} \leq 0
$$

where Q is the system operation time per solar day.
The energy storage capacity constraint can be written as,

$$
\left[\begin{array}{lllll}
-P_{I_{1}} & -P_{I_{2}} & -P_{I_{3}} & P_{0} & -\frac{\gamma}{\varepsilon Q_{p}}
\end{array}\right]_{v i j}\left[\begin{array}{l}
x^{I_{1}} \\
x^{I_{2}} \\
x^{I_{3}} \\
x^{P} \\
x^{E}
\end{array}\right]_{v i j t} \leq 0
$$

where P is the system power demand or supply.

Example Results

Georgia Tech

- ISRU is more effective
for round-trip missions than one-way cargo missions;
- FSPS (Fission Surface Power Systems) has a better performance than the PV (Photovoltaic) power system (i.e., solar panels) in this case.
- Developed optimization framework can be used for
$>$ Design of large-scale space exploration campaign considering the interaction between space infrastructure design and space transportation planning.
$>$ Fast evaluation of potential performances of space architectures and spacecraft in large-scale campaign

